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SUMMARY  

This paper suggests that, all too often, graphical elements are discounted in statistical 
practice. Properly constructed graphs can greatly help understand data and statistical 
analysis, so the more of them used in statistical teaching and consultancy, the better. 
We present an example of the usefulness of graphs in studying associations among six 
soil properties. 
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1. Introduction 

Statistics is not an easy matter for non-statistical students and researchers. This 

includes not only the most difficult and complex methods, but also quite regular 

ones. Populations and samples, distributions, point and interval estimation, 

hypothesis testing, analysis of variance, regression and so on, are all difficult 

topics for anyone who is just beginning his or her statistical education. Hence 

a teacher must do everything that is possible to facilitate the understanding 

of statistics by students. This applies equally to consultations with non-

statistical researchers. 

We claim that this might be done by incorporating many more graphical 

elements into statistics teaching and consultancy than is normally done. 
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Of course, it is difficult to estimate how much graphics is taught and used, 

mainly because each teacher has his or her own approach towards statistics and 

methods of teaching. It is rather unlikely to find two teachers who teach in 

exactly the same way. This is a good rather than a bad thing, simply because 

statistics is a kind of art, and no art should be taught in a single uniform way. 

Nonetheless, graphical elements seem to be far too rare in statistics courses. 

This can be seen in numerous textbooks on statistics, both international and 

Polish, where graphs serve only as an insignificant addition. Of course, graphics 

are an essential element of some statistical methods, including regression and 

multivariate analysis. However, all too often these methods are reported and − 

unfortunately − analysed without any use of graphs, which may result in very 

poor performance of statistical models, and especially in incorrect 

interpretation. 

This paper is a call for the use of more graphics in biological, environmental 

and agricultural statistics at the elementary level of teaching and consultancy. 

Thanks to graphs, many statistical issues that are too difficult to understand for 

non-statisticians can become friendlier, and even more importantly, 

interpretation and conclusions may become more correct and more conclusive. 

This is because with graphs one pays more attention to the data rather than just 

focusing on numerical output from statistical software. We will illustrate these 

issues with a very simple example of correlation analysis, which is so 

commonly applied in biological and agricultural literature. If so simple 

a problem may be misinterpreted, then what is to be said about genuinely 

difficult ones, those which call for much more sophisticated and complex 

statistical methods? 

This paper, then, aims to discuss how graphs can cure the illness 

of statistical teaching and consultancy: the lack of communication between 

a teacher and his or her students, or between a consultant and his or her client. 



 
 
 
 

Call for more graphical elements in statistical teaching and consultancy 

 

 
 
 
 

59 

2. Example: Correlations 

Merely focusing on statistical hypothesis testing and forgetting about the data 

one studies can provide nonsensical results. Consider correlation, for example. 

Kozak (2008) showed that with a huge sample, a correlation coefficient even 

smaller than 0.05 can be significant. Does this make any sense? Not much, if 

one understands this as an indication of the significant linear association 

between the two variables. Going further, an extremely common way of 

presenting associations among traits is based on a correlation matrix, which 

merely reports Pearson’s correlation coefficients among all the variables along 

with their significance indicated by asterisks. (Kozak, 2009 discusses why 

asterisks should not be used to show significance of correlation and statistical 

estimates in general.) This standard approach may be very misleading for 

several reasons. First is the reason mentioned above — testing of correlation 

may have little sense (see the discussion in Kozak, 2008). Second, the reader is 

offered no information (or opportunity to obtain it) as to whether there is any 

nonlinearity among the variables. Third, no information about outliers is 

offered. Fourth, the reader cannot grasp the whole picture of the associations 

among the variables. Hence not only can such a correlation matrix provide an 

unclear picture of the associations among the variables, but the matrix can be 

incorrectly interpreted. 

Table 1 lists Pearson’s correlations among six soil traits, taken from the 

“soil” dataset of the “agricolae” package (de Mendiburu, 2008) of R (R 

Development Core Team, 2009). The soil traits considered in our analysis are 

pH, EC (electric conductivity), CaCO3, MO (organic matter), CIC (cation 

exchange capacity) and P content (the original abbreviations from the dataset 

are retained). The 13 observations come from different locations. Only two 

coefficients are significant in Table 1: those between pH and CaCO3 (P≤0.01), 

and between P and MO (P≤0.05); note that the small sample size has quite an 

impact on this result. One might decide to present only significant correlations,  
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as is sometimes done (e.g. Kobierski, 2004) − see Table 2. Such a table stresses 

the importance of hypothesis testing, and discards all correlations that may be 

high although insignificant or close to significant (see the discussion by Kozak, 

2008). Table 3, on the other hand, is much better presented than Tables 1 and 2 

− instead of asterisks to indicate significance, or providing only significant 

coefficients, each coefficient is accompanied by the corresponding p-value. In 

this way the reader has more information about the strength of the relationship. 

 
Table 1. Correlation matrix for six soil traits. All correlations are given with  

the significance indicated with asterisks. Source: “soil” data set,  
package agricolae of R. 

 pH EC CaCO3 MO CIC 
EC 0.55     
CaCO3 0.73** 0.32    
MO –0.33 –0.39 –0.23   
CIC 0.26 0.00 0.30 0.53  
P 0.14 0.46 0.05 0.56* 0.55 

*, ** Significant at p ≤ 0.05 and p ≤ 0.01, respectively 

 

Table 2. Correlation matrix for six soil traits. Only significant correlations 
are given, which in this case gives only two coefficients. Source: “soil” data set, 

package agricolae of R. 

 pH EC CaCO3 MO CIC 
EC ns     
CaCO3 0.73** ns    
MO ns ns ns   
CIC ns ns ns Ns  
P ns ns ns 0.56* ns 
*, ** Significant at p ≤ 0.05 and p ≤ 0.01, respectively; ns—nonsignificant 

 
Table 3. Correlation matrix for six soil traits. The corresponding p-values are 

provided in parentheses. Source: “soil” data set, package agricolae of R. 

  pH EC CaCO3 MO CIC 
EC   0.55 (0.053)     
CaCO3   0.73 (0.005)   0.32 (0.294)    
MO –0.33 (0.278) –0.39 (0.187) –0.23 (0.456)   
CIC   0.26 (0.386)   0.00 (0.988)   0.30 (0.315)   0.53 (0.06)  
P   0.14 (0.651)   0.46 (0.111)   0.05 (0.874)   0.56 (0.045)   0.55 (0.051) 
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But is the information provided in Table 3 − let alone Tables 1 and 2 

− sufficient to get the whole picture of the associations among the variables? It 

might be, but only under the assumption that only linear relations are possible 

among the variables within this dataset. Can we make such an assumption? 

Probably not − we had no prior information that would justify this (even if we 

did have this information, outliers may occur, sometimes heavily influencing 

the estimates). Instead, let us draw a set of scatterplots for each pair of 

variables − this very useful technique is called the scatterplot matrix (Cleveland, 

1993, 1994). See Figure 1 for a scatterplot matrix of our six variables; it was 

constructed with the splom function of the lattice package (Sarkar, 2008) of R 

(R Development Core Team, 2009). In addition, we have added to each panel 

a locally weighted regression (loess) curve (Cleveland, 1979, 1993, 1994), 

which aims to show a robust relationship between a row (in terms of 

a scatterplot matrix) and a column variable; the loess curves were fitted with the 

re-descending M estimator with Tukey’s biweight function. Clearly it would be 

difficult to claim that all relationships are approximately linear. Of course, 

besides the intrinsic characteristics of this association, the smallness of the 

sample and the obvious outliers may have an impact on this problem, but can 

we simply ignore this fact and choose linear relationships?  

See Figure 2. To each panel of the same scatterplot matrix we have added 

a straight least-square line representing a linear relationship between a row and 

a column variable. Thus these lines portray the relationships which the correla-

tions in Tables 1 and 3 represent. Clearly, claiming that all these relations are 

linear would rather be a crude approach to data analysis. Our aim is not to sug-

gest using loess for such types of data (besides, there are other nonparametric 

regression methods), but rather to recommend careful examination of data using 

graphical methods before applying statistical analysis. 
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Figure 1. Scatterplot matrix for six soil traits. A locally weighted regression 
(loess) curve has been added to each panel to provide a rough association 

between the row and column variables. In some panels one can see outliers 
as well as nonlinearity. 

3. Discussion 

Graphs have been present in statistics since the very beginning. However, a real 

milestone in graphical statistics probably came with John W. Tukey’s ingenious 

book on exploratory data analysis (Tukey, 1977). Since then, graphs have been 
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Figure 2. Scatterplot matrix with a locally weighted regression (loess) curve 
from Figure 1, with a superposed dashed least-square line representing a linear 

relationship between a row and a column variable. 

 

more and more appreciated in statistics and gained more and more interest, 

including biological, environmental and agricultural applications. Examples 

include the GGE (Yan, Kang, 2002, Fan et al., 2007) and AMMI (Gauch, 1992) 

methods for studying genotype-by-environment interactions, which are based 

on various biplots; various methods of visualization of proteomics and genom-

ics data (e.g., Saldanha, 2004, Brouwer et al., 2009, Carver et al., 2009); PCA 



 
 
 
 

M. Kozak, J. Bocianowski, S. Sawkojć, A. Wnuk 

 
 
 
 
64 

(e.g., Nuijten, van Treuren, 2007, Lattoo et al., 2008, Ursem et al., 2008, van 

Berloo et al., 2008, Xie et al., 2008, Asare et al., 2009, Nicholls, 2009); cluster 

analysis (e.g., Eisen et al., 1998, Crossa, Franco, 2004); genetic diversity (e.g., 

Stępień et al., 2007, D’hoop et al., 2008, Lattoo et al., 2008, Yonemori et al., 

2008); gene expression (e.g., Mehrian-Shai et al., 2007); multi-trait and multi-

environmental QTL analysis (e.g., Malosetti et al., 2008); multidimensional 

scaling (e.g., van Wezel, Kosters, 2004, Venna, Kaski, 2006, Salmela et al., 

2008, Žilinskas, Žilinskas, 2006, Tzeng et al., 2008); and many other 

multivariate methods (e.g., Debat et al., 2008, Hepperger et al., 2008, Rabelo et 

al., 2008). Of course, there can be no spatial statistics without graphs (e.g., 

Ripley, 1981, Grego et al., 2006, Gozdowski et al., 2008, Molin, de Castro, 

2008). Other efficient and interesting applications of graphs in various fields of 

agricultural sciences include Lammel et al. (2007), de Melo et al. (2007), Miele 

et al. (2007), Bünemann et al. (2008), Ribeiro et al. (2008), Rawlings et al. 

(2009), and Ribeiro Jr et al. (2009). 

The aforementioned articles use some intricate and complex methods and/or 

graph types for data visualization and analysis. One must nonetheless start with 

basic methods to learn how graphing works for data analysis. Still, however, 

some books, even excellent from a statistical point of view, fail to direct 

readers’ attention to graphical approaches. Of course there are other books that 

stress this very important topic, for example for checking model assumptions 

and goodness-of-fit (e.g., Quinn and Keough, 2002).  

We believe that the above simple example with correlations should 

convince the reader that data visualization may be a powerful tool for 

understanding the data and phenomena one wants to study. We also believe that 

there should be no statistics without visualization, except in rare cases. Of 

course, graphing is not all roses. One has to spend time on learning useful tools, 

and the construction of good graphs itself takes time. In addition, Cook and 

Weisberg (1999) write, “useful graphs must have a context induced by 

associated theory, and… a graph without the well-understood statistical context 

is hardly worth drawing” (italics original). Of course, Cook and Weisberg have 
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intricate statistical graphics in mind, including residual plots and scatterplot 

matrices used in the context of multiple regression. Their note is of importance 

for general data visualization, though — whatever one visualizes, it does have 

to be set up in the appropriate statistical context, even if this is just exploratory 

visualization.  

Graphing requires some knowledge of relevant software, and not all 

software is good for this purpose. In this paper, we used R, which is excellent 

for graphing, but requires quite a bit of time to learn. However, after some time 

even quite complex graphs become easy to construct. Therefore to what Kozak 

et al. (2004) wrote about the usefulness of R in biometrical computing, we 

could add the enormous possibilities it offers in graphical terms. 

In this paper we have focused on selected graphs and problems. 

Visualization, however, offers many more graphical tools to explore data — see 

for example Cleveland’s books (1993, 1994) to learn about various methods of 

data visualization, and Tufte (1983, 1990, 1998, 2001, 2006) to learn what can 

be done with graphs.  

Understanding statistics is often very difficult. Graphs can make it easier. 
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